Pentose Phosphate Pathway

- Pentose phosphate pathway is also called Hexose monophosphate pathway/ HMP shunt/ Phosphogluconate pathway.
- It is an alternative route for the metabolism of glucose.
- It is more complex pathway than glycolysis.
- It is more anabolic in nature.
- It takesplace in cytosol.
- The tissues such as liver, adipose tissue, adrenal gland, erythrocytes, testes and lactating mammary gland are highly active in HMP shunt.
- It concern with the biosynthesis of NADPH and pentoses.

Phases in PPP pathway

- Pentose Phosphate pathway starts with glucose and it is a multi-steps reaction.
- There are two distinct phages in the pathway.

The first is Oxidative phase, in which NADPH is generated. The second is the Nonoxidative synthesis of 5carbon sugars.

Oxidative phase

- Irreversible phase.
- Dehydrogenation of glucose 6- phosphate to 6- phosphogluconate catalyzed by glucose 6-phosphate dehydrogenase.
- Followed by hydrolysis of 6-phosphoglucolactone catalyzed by 6- phospho- glucnate dehydrogenase.
- Decarboxylation follows with the formation of the keopentose ribulose 5-phosphate.
- both this step requires NADP+ as hydrogen acceptor.

Oxidative Stage of Pentose Phosphate Pathway Glucose-6-phosphate

Non-oxidative phase

Non-Oxidative Stage of Pentose Phosphate Pathway

Biological significance

A) Importance of NADPH

- NADPH is used in the synthesis of certain aminoacids involving the enzyme glutamate dehydrogenase.
- it is used for the biosynthesis of fatty acids and steroids.
- 3) The NADPH keeps the glutathione of RBC in reduced state to preserve the integrity of RBC membrane.
 - 4) The NADPH keeps the ferrous(Fe2+) iron of hemoglobin in reduced state.
 - The process phagocytosis requires NADPH.
 - It is required for the detoxification of drugs.

B) Importance of pentoses

- The pentose and its derivatives are used for the synthesis of <u>nucleic</u> <u>acids(DNA, RNA)</u> & many <u>nucleotides(ATP, NAD+, coA)</u>.
- When an organism growing on pentose sugar(5c), this pathway is used to produce <u>carbohydrates</u> for cell wall synthesis.

Overview of the pentose phosphate pathway

(Lehninger Principles of Biochemistry (5E, 2008) Nelson and Cox, WH Freeman and company)

Regulation of HMP Shunt

The hexose monophosphate shunt (HMP shunt)
is regulated by the levels of NADP+ and NADPH in the cell,
and by the activity of the key regulatory enzymes G-6-PD
and 6-phospho-gluconate dehydrogenases:

NADP+ levels

High levels of NADP+ activate G-6-PD, which promotes the HMP shunt when the cell needs more R5P or NADPH.

NADPH levels

High levels of NADPH inhibit G-6-PD, which slows down the pathway when there is enough NADPH.

Enzyme activity

The activity of the enzymes is activated by glucose, insulin, thyroxine, and inhibited by starvation.

Carbohydrate diets

High carbohydrate diets enhance the activities of both dehydrogenases and the rate of the pathway