Metabolism

UG 5th semester

BCH522J1

BIOCHEMISTRY AND CARBOHYDRATE AND AMINO ACID METABOLISM

- CREDITS: THEORY-3; PRACTICAL-1
- THEORY (3 CREDITS: 45 HOURS)

Department of Biochemistry Government Degree College Tral

General features of metabolic pathways

- Irreversible: Metabolic pathways are irreversible.
- Regulation: All metabolic pathways are regulated.
- Subcellular compartments: In eukaryotic cells, metabolic pathways occur in specific subcellular compartments.
- Performed by enzymes: Metabolic pathways are occur through enzymes that transform one molecule into another through a series of reactions.

- Catabolic and anabolic pathways: Catabolic and anabolic pathways must be different.
- First committed step: Every metabolic pathway has a first committed step.
- May be linear, cyclic or spiral.
- Function is to yield energy or intermediates.

GLYCOLYSIS

Glycolysis comes from a merger of two Greek words:

- ➤ Glykys = sweet
- Lysis = breakdown/ splitting

It is also known as Embden-Meyerhof-Parnas pathway or EMP pathway.

INTRODUCTION

- GLYCOLYSIS is the sequence of 10 enzyme-catalyzed reactions that converts glucose into pyruvate with simultaneous production on of ATP.
- In this oxidative process, 1mol of glucose is partially oxidised to 2 moles of pyruvate.
- This major pathway of glucose metabolism occurs in the cytosol of all cell.
- This unique pathway occurs aerobically as well as anaerobically & doesn't involve molecular oxygen.

Glycolysis

TWO PHASES OF GLYCOLYSIS

- Glycolysis leads to breakdown of 6-C glucose into two molecules of 3-C pyruvate with the enzyme catalyzed reactions being bifurcated or categorized into 2 phases:
- 1. Phase 1- preparatory phase
- 2. Phase 2- payoff phase.

PREPARATORY PHASE

- It consists of the 1st 5 steps of glycolysis in which the glucose is enzymatically phosphorylated by ATP to yield Fructose-1,6-biphosphate.
- This fructuse-1,6-biphosphate is then split in half to yield 2 molecules of 3-carbon containing Glyceraldehyde-3-phosphate/ dihyroxyacteone phosphate.

 Thus the first phase results in cleavage of the hexose chain.

 This cleavage requires an investment of 2 ATP molecules to activate the glucose mole and prepare it for its cleavage into 3-carbon compound.

PAYOFF PHASE

- This phase constitutes the last 5 reactions of Glycolysis.
- This phase marks the release of ATP molecules during conversion of Glyceraldehyde-3-phosphtae to 2 moles of Pyruvate.
- Here 4 moles of ADP are phosphorylated to ATP.
 Although 4 moles of ATP are formed, the net result is only 2 moles of ATP per mole of Glucose oxidized, since 2 moles of ATP are utilized in Phase 1.

OVERALL BALANCE SHEET OF GLYCOLYSIS

 Each molecule of glucose gives 2 molecules of Glyceraldehyde-3-phosphate. Therefore, the total input of all 10 reactions can be summarized as:

Glucose + 2ATP+ 2Pi+ 2NAD++ 2H++ 4ADP

2Pyruvate+ 2H++ 4ATP+ 2H2O+ 2NADH+ 2ADP

On cancelling the common terms from the above equation, we get the net equation for Glycolysis:

Glucose+ 2Pi+ 2ADP+ 2NAD+

2Pyruvate+ 2NADH+ 2ATP+ 2H+ + 2H₂O

THUS THE SIMULTANEOUS REACTIONS INVOLVED IN GLYCOLYSIS ARE:

- ➤ Glucose is oxidized to Pyruvate
- ➤ NAD⁺ is reduced to NADH
- > ADP is phosphorylated to ATP

Table 1: Energetics of Glycolysis under aerobic and anaerobic conditions

Aerobic conditions

Anaerobic conditions

4-2=2

	Acrobic conditions	Anaciobic conditions
Step-1	-1 ATP	-1 ATP
Step-3	-1 ATP	-1 ATP
Step-5	2 x NADH = 5 ATP	2 x NADH = 5 ATP
Step-6	2 x ATP	2 x ATP
Step-9	2 x ATP	2 x ATP
Regeneration of NAD ⁺		– 2 NADH = 5 ATP

9-2=7

NET ATP

Regulation of Glycolysis

REGULATED STEPS IN GLYCOLYSIS

Hexokinase: first step in glycolysis

- Phosphorylates glucose
- Consumes ATP
- · Traps glucose within cell
- · Muscle: inhibited by glucose 6-P
- Liver: glucokinase isozyme

Phosphofructokinase: committed step

- Most important control element
- · First reaction unique to glycolysis
- Phosphorylates fructose 6-P to form fructose 1,6-BP
- Consumes ATP
- Activated by AMP and fructose 2,6-BP (more important in liver)
- Inhibited by ATP, citrate and low pH (muscle)

Pyruvate kinase: last step in glycolysis

- · Dephosphorylates phosphenol pyruvate to form pyruvate
- Generates ATP
- Activated by fructose 1,6-bisphosphate and AMP
- Inhibited by: ATP, alanine & Acetyl CoA

MAJOR REGULATION SITES IN GLYCOLYSIS

Muscle

- · Requires energy for contraction
- · ATP: AMP ratio determines whether glycolysis should move forward
- When ratio is low: glycolysis activated
- . 2 ADP combine to form 1 ATP and 1 AMP (free ADP does not persist)

Liver

- Uses molecules from glycolysis to start biosynthetic/metabolic reactions
- High glucose levels: liver stores glucose as glycogen
- Low glucose levels: liver releases glucose
- · Liver isozymes allow glucose to be prioritized for brain & muscles

Glycolysis is regulated by a number of mechanisms, including:

Allosteric regulation

Cells use allosteric effectors to rapidly respond to changes in energy demand by adjusting the activity of glycolytic enzymes.

Hormonal signals

Hormones like insulin and glucagon help coordinate glycolytic activity in response to changes in nutrient availability and metabolic state.

Enzyme activity

The activity of key regulatory enzymes, such as hexokinase, phosphofructokinase, and pyruvate kinase, is regulated.

Metabolite concentrations

Transient changes in key metabolite concentrations can balance ATP production and consumption within the cell.

Cytoskeleton architecture

The actin cytoskeleton is sensitive to environmental mechanical changes, which can regulate glycolysis.

Acetylation

Acetylation of metabolic enzymes regulates their activity and targets them for degradation.

Regulation

- Glycolysis is also regulated by the hormones Glucagon, Epinephrin, and Insulin and by the changes in gene expression of several glycolytic enzymes.
- Allosteric regulation of several glycolytic enzyme:-

1. Hexokinase:

Inhibited by glucose-6- phosphate.

2. Phosphofructokinase-1:

- Inhibitor-ATP, Citrate and h+ ion in low pH.
- Activater- fructose-2,6-bisphosphate, AMP, Fructose-6 Phosphate

3. Pyruvate kinase:

- Inhibitor- ATP and Acetyl-CoA
- Activater -fructose 1,6 bisphosphate and AMP

