Glycogenesis

- The synthesis of glycogen from glucose is called as glycogenesis.
- Glycogenesis takes place in the cytosol & requires ATP and UTP(Uridine triphophate), besides glucose.
- Steps:
- Synthesis of UDP-glucose:

- **Synthesis of UDP-glucose:**
- The enzymes hexokinase (in muscle) & glucokinase (in liver) convert glucose to glucose 6-phosphate
- Phosphoglucomutase catalyses the conversion of glucose 6-phosphate to glucose 1-phosphate.
- Uridine diphosphate glucose (UDP-glucose) is synthesized from glucose 1-phosphate & UTP by UDP-glucose pyrophosphorylase.

Requirement of primer to initiate glycogenesis

- A small fragment of pre-existing glycogen must act as a 'primer' to initiate glycogen synthesis.
- A specific protein 'glycogenin' can accept glucose from UDP Glucose.
- The hydroxyl group (OH) of the amino acid tyrosine of glycogenin is the site at which the initial glucose unit is attached.

- The enzyme glycogen initiator synthase transfers the first molecule of glucose to glycogenin.
- Then glycogenin itself takes up a few glucose residues to form a fragment of primer which serves as an acceptor for the rest of the glucose molecules.

Glycogen synthesis by glycogen synthase

- Glycogen synthase is responsible for the formation of 1,4-glycosidic linkages.
- This enzyme transfers the glucose from UDP-glucose to the non-reducing end of glycogen to form a-1,4 linkages.

Formation of branches in glycogen

- Glycogen synthase can catalyse the synthesis of a linear unbranched molecule with a-1,4 glycosidic linkages.
- Glycogen is a branched tree-like structure.
- The formation of branches is brought about by the action of a branching enzyme, namely glucosyl -4-6 transferase.

- This enzyme transfers a small fragment of 5 to 8 glucose residues from the non-reducing end of glycogen chain (by breaking a-1,4 linkages) to another glucose residue where it is linked by a-1,6 bond.
- This leads to the formation of a new nonreducing end, besides the existing one.
- Glycogen is further elongated & branched, by the enzymes glycogen synthase & glucosyl 4-6 transferase.

Function of glycogen in liver and muscle

Fig. 28.2. Glycogenolysis in skeletal muscle

Regulation of glycogenesis

Glycogenesis is regulated by a number of factors, including:

Blood glucose levels

High blood glucose levels trigger glycogenesis, while low blood glucose levels inhibit it.

Hormones

Insulin stimulates glycogenesis, while glucagon and epinephrine inhibit it:

- ✓ Insulin: Activates glycogen synthase, which increases glycogen synthesis in the liver and muscle.
- ✓ Glucagon: Inhibits glycogen synthase and activates glycogen phosphorylase, which breaks down glycogen in the liver.
- ✓ Epinephrine: Activates glycogen breakdown in the liver and skeletal muscle.

• Energy state of the cell

In skeletal muscle, AMP inhibits glycogenesis and triggers glycogenolysis.

Phosphorylation

The activity of glycogen synthase and glycogen phosphorylase is regulated by phosphorylation, which is controlled by enzymes under the control of hormonal activity.

Calcium ions and cAMP

These act as secondary messengers, which is an example of negative control in glycogenesis.